KINETIC RESOLUTION OF CHIRAL METALLOCENIC ALDEHYDES AND ALCOHOLS WITH LIVER ALCOHOL DEHYDROGENASE

Yoshimitsu Yamazaki* and Kuniaki Hosono

Fermentation Research Institute, AIST, Tsukuba, Ibaraki 305, Japan

Summary: Horse liver alcohol dehydrogenase-catalyzed oxidoraducticn was useful to resolve racemic lformyl-Z-methyl derivatiws of tricarbonyl(cyclopentadienyl)manganesed (benzene)tricarbonylchromium and racemic 1-hydroxyethylferrocene, ruthenocene and osmocme.

Enzyme-mediated asymmetric transformation is aueeful method to prepare optically active organometallic compcurds, as recently shown by us with horse liver alcohol dehydrogenase (HLADH) for ferrocene derivatives ^{la} and several other groups with hydrolases for l-ferrocenylethanol, ^{lb},^c a dienoate-iron complex, ^{ld} or silicon-containing esters. ^{le} Microbial reductions of aromatic ketones and aldehydes complexed with $Cr(\omega)$ ₃ have been also reported.^{1f-h} *Here we describe how HIADH* is useful in the bioconversion of more various organometallic compounds.

(±)-Tricarbonyl(\mathcal{U} -1-formyl-2-methylcyclopentadienyl)manganese (1,^ 118 mg) was reduced with HLADH (120 U as assayed with EtOH) and NADH at pH 7.5 and 4° G $^{\circ}$ When the TLC monitor showed that the spots for 1 and the product 2 had almost the same size at 2.5 hr, the compounds were extracted with EtOAc and isolated by silica gel column chromatography as optically active oils: 1 (36 mg, 31 %) yield), $(\alpha)_{n}^{\infty}$ +101°(c=2.2, benzene); and 2 (41 mg, 35 % yield), $(\alpha)_{n}^{\infty}$ -8.7°(c=2.1, benzene).⁴ The latter was oxidized with MnO₂ to give the levorotatory aldehyde 1 in 78 % yield, (a) $\frac{1}{n}$ -lO4°(c=2.1, benzene). The absolute configuration of $(+)-\frac{1}{\infty}$ was determined to be (15, 2R) by its oxidation with ${\bf Ag}_2^0$ to the known (15)-(+)-tricarbonyl(η^5 -l-carboxy-2-methylcyclopentadienyl)manganese (76 % yield, mp 148~149°C, $(\alpha)_{n}^{25}$ +84°(c=0.50, EtOH); lit.⁵ mp 145~148°C, $(\alpha)_{n}$ +83.3°(c=l.0, EtOH)).

(t)-Tricarbonyl(η^6 -2-methylbenzaldehyde)chromium (3)⁶ was also resolved by the HLADH-catalyzed reduction to (1§)-(+)-3 (28 % yield, mp 94~95°C, $(\alpha)_{D}^{25}$ +654°(c=0.20, CHCl₃); lit. mp 99~100°C,⁷ $(\alpha)_{D}^{20}$ +665°(c=0.3, QHCl₃)⁸) and (lR)-(-)-3 (mp %~97°C, $(\alpha)_{D}^{25}$ -659°(c=0.20, CHCl₃)) via DMSO-Ac₂0 oxidation of the enzymically produced 2-methylbenzyl alcohol complex (36 % yield, mp $97 \sim 98^{\circ}$ C, $\left(\alpha\right)_{n}^{25}$ -12°(c=1.9, benzene)). The enantiomeric purity was almost 100 %.e. for all aldehydes ((+)- and $(-)$ -1 and 3), as evidenced by the single aldehyde proton signal in the PMR spectrum measured with $Eu(hfc)₃$. $⁸$ </sup>

(t)-l-Hydroxyethylferrocene (4), ruthenocene (5) and osmocene (6) were enantioselectively oxidized with HLADH, NAD⁺ and FMN⁹ to give the ketones and levorotatory alcohols: (mp 76~77°C, $(\alpha)_{n}^2$ '-29°(c=0.51, benzene) (lit. " (-)-4_, 44 % yield, mp 72~73°C, $(\alpha)_{\text{D}}^{\text{C}}$ -30.5°(c=l.l, benzene)); (-)-5, 44 % yield, mp 77~78°C, $(\alpha)_{n}^{2}$ -21°(c=2.0, benzene) (lit." (23° $(\alpha)_{n}^{2}$ + 20.7° (c=1.5, benzene)); and (-)-6, 33 % yield, mp 90~91°C, $(\alpha)_{n}^{23}$ -15°(c=2.0, benzene). HPLC analysis with a β-cyclodextrin-bonded column¹² indicated that the enantiomeric purity was 100 % e.e. for $(-)-4$ (with no detectable antipode peak) and 92 \pm 1 %e.e. for $(-)$ -5 and $(-)$ -6.¹³

The present enzymatic resolution method is very facile, as it needs neither derivatization such as the semioxamazone formation used for $3/2$ nor temporary conversion to amine or carboxylic acid. 11,14 Jaouen <u>et al.¹⁸ resolved an organometallic aldehyde resembling 3</u> by baker's yeast reduction, but the present HIAIH method is more promising for high enantiomeric purity and experimental convenience.

References and Notes

- 1. (a) Y. Yamazaki and K. Hosono, Tetrahedron Lett., 29, 5769 (1988); (b) Y.-F. Wang, J. J. Lalonde, M. Momongan, D. E. Bergbreiter and C.-H. Wong, J. Am. Chem. Soc., 110, 7200 (1988); (c) N.W. Boaz, Tetrahedron Lett., 30, 2061 (1989); (d) N. W. Alcock, D. H. G. Crout, C. M. Henderson and S. E. Thomas, J. Chem. Soc., Chem. Commun., 746 (1988); (e) C. Syldatk, A. Stoffregen, A. Brans, K. Fritsche, H. Andree, F. Wagper, H. Hengelsberg, A. Tafel, F. Wuttke, H. Zilch and R Tacke, & New York Acad. Sci., 542, 330 (1988); (f) J. Gillois, D. Buisson, R. Azerad and G Jaouen, J. Chem. Soc., Chem. Commun, 1224 (1988); (g) S. Top, G. Jaouen, J. Gillois, C. Baldoli and S. Maiorana, <u>J. Chem. Soc., Chem. Commun</u>., 1284 (1988); (h) Y. Yamazaki and K. Hosono, Agric. Biol. Chem, 2, 3239 (1988) (and references cited therein).
- 2. H. Egger and A. Nikiforov, Monatsh. Chem., 99, 2311 (1968).
- 3. _l_was dissolved in the medium (60 ml of 0.1 M phosphate buffer, @-I 7.5, containing 2 % EtMl and 2.5 % Tween 80) by sonication before addition of HLADH and NADH (85 μ mol).
- 4. MS for $(+)-1$ m/z: 245.9717 (M⁺); calc. C₁₀H₇Mn0₄=245.9725. MS for $(-)-2$ m/z: 247.9960 (M⁺); calc. $C_{10}H_0MnO_A=247.9881.$ PMR (benzene-d₆) for $(-)-2$: The aldehyde proton signal (6 9.18) of $(+)-1$ had disappeared and two coupled doublets were found at δ 3.73 and 3.83 (IH each, J=13 Hz, CHHOH).
- 5. H. Gowal and K. Schlögl, Monatsh. Chem., 98, 2302 (1967).
- 6. Prepared by the complexation of 2-methylbenzyl alcohol with $\text{Cr(CO)}_{\mathcal{L}}$ and oxidation of the alcohol complex with DMSO-Ac $_{2}$ O (S. G. Levine and B. Gopalakrishnan, <u>Tet</u>řahedron Lett., 23, 1239 (1982)).
- 7. A. Solladié-Cavallo, G. Solladié and E. Tsamo, J. Org. Chem., 44, 4189 (1979).
- 8. A. Solladié-Cavallo and J. Suffert, Magn. Reson. Chem., 23, 739 (1985).
- 9. Typical reaction mixture: 180 ml of 0.1 M phosphate buffer (pH 8.3) containing 260 μ mol NAD⁺, 3.3 mmol FMN, 1.7 ml Tween 80 and 170 mg (\pm) -5. 800 U, 400 U and 400 U of the enzyme were added at 0, 30, and 53 hr, respectively. The mixture was stirred at 30 °C for 69 hr.
- 10. G. W. Gokel, D. Marquarding and I. K. Ugi, J. Org. Chem., 37, 3052 (1972).
- 11. T. D. Xrbitt and W. E. Watts, J. Chem. Sot., Perkin Trans. 2, 177 (1974).
- 12. D. W. Armstrong, W. DeMond and B. P. Czech, Anal. Chem., 57, 481 (1985).
- 13. Each (-)-enantiomer moved faster than the antipode. Although the stereochemistry for (-)-5 and (-)-_6_has **Mt ken** reported, the common chromatographic behavior and the common enzymic unreactivity suggest that both levorotatory enantiomers have the same \underline{R} configuration as $(-)4$ ¹⁰
- 14. A. Ratajczak and B. Misterkiewicz, J. Organometal. Chem., 91, 73 (1975).